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Bioinformatics has become one of the key scientific disciplines during the 21st century. The aim of this work was 
to utilize state-of-the-art tools and help further the research of oncologic diseases while improving the quality of 
life of people by contributing to the research of liquid biopsy. To achieve this goal we analysed dataset of oncolo-
gic samples Graz with focus on DNA fragment length profiles in blood plasma. Our hypothesis was that, the on-
cologic samples will have shorter fragments due to the ctDNA being released into the bloodstream. The results 
from the Graz dataset confirmed our hypothesis. After confirming our hypothesis we tested different ML models 
and feature selection methods on the Graz dataset samples with the aim of creating the best possible predictor 
for differentiating oncologic samples from healthy samples. The result of our work was creation of a SVM pre-
dictor, which offered prediction with satisfactory accuracy.
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Dĺžkové profily fragmentov cirkulujúcej DNA ako potenciálny prediktor štádia onkologických ochorení
V 21. storočí sa stala Bioinformatika jednou z popredných vedeckých disciplín. Cieľom tejto práce bolo využiť 
najmodernejšie dostupné nástroje a pomôcť svojim výsledkom k výskumu onkologických ochorení a prispieť tak 
k zlepšeniu kvality života ľudí tým, že prispejeme k výskumu problematiky tekutej biopsie. Za týmto cieľom sme 
postupne analyzovali dataset onkologických vzoriek Graz so zameraním sa na dĺžkové profily DNA fragmentov 
v krvnej plazme. Našou hypotézou bolo, že vzorky onkologických pacientov budú mať kvôli uvoľňovaniu ctDNA 
do krvi kratšiu dĺžku fragmentov. Výsledky analýzy Graz datasetu našu hypotézu potvrdili. Po potvrdení našej hy-
potézy sme otestovali rôzne ML modeli a rôzne „feature selection“ metódy na vzorkách Graz datasetu za cieľom 
vytvorenia čo najlepšieho prediktora na rozlíšenie onkologických a zdravých vzoriek. Výsledkom bolo vytvorenia 
prediktora na báze SVM, ktorý nám ponúkol dostatočne uspokojivú presnosť predikcie.
Kľúčové slová: krvná biopsia, strojové učenie, SVM, dĺžkové profily fragmentov, cfDNA, ctDNA
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Introduction
Biopsy has been one of the leading diagnostics approa-

ches to characterize oncology disease for many years. This 
well known procedure has saved many lives, however it has 
multiple crucial drawbacks including the high cost, discom-
fort it brings to the patient, difficulty of obtaining the samples 
in more complicated diagnosis and lastly it does not show 
the whole image of the tumour based on the tumour’s hete-
rogeneous nature(1). The answer to these problems may in 
future be the liquid biopsy method. This method relies on 
the analysis of blood samples from patients, specifically the 
occurrence of circulating tumour DNA (ctDNA) in the sam-
ple(2) as can be seen in Figure 1. The goal of liquid biopsy is 

to monitor the development and progress of malignant dise-
ase and it’s reaction to therapy by analyzing blood samples 
of the patient. Furthermore, liquid biopsy proved to be a use-
ful tool in the process of targeted therapy - changing of me-
dicine and therapy based on changes in blood test results(1,2).

Cell apoptosis and/or cell necrosis leads to release of 
short nucleic fragments(<166bp) into plasma(3). These frag-
ments are referred to as cfDNA - circulating cell-free

DNA. The tumour derived subset of cfDNA, caused by high 
turnover rate of tumour cells is called ctDNA - circulating tu-
mour DNA(3). Circulating Tumour Cells (CTC) are rare cells 
released into patient’s bloodstream. These cells then extra-
vasate to different organs, which in small fraction leads to 
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formation of metastasis(1). Detection of these cells after the 
first cycles of therapy, combined with their short lifespan in-
dicates a futility of the treatment(2).

There are several big challenges, that must be overcomed 
before liquid biopsy could be widely used in clinical practice.

Firstly, the concentration of ctDNAs in blood is very low, 
which leads to the need of extremely sensitive and specific 
analytic methods for the characterisation and even detec-
tion of these fragments. The concentration of ctDNA is even 
lower in samples of patients in early stages of cancer(2).

Secondly, even though the analysis of plasma samples, 
used in the ctDNA method is easier, the samples may be con-
taminated by cfDNA released during innate processes of cell 
life-cycle. The ctDNA method also severely lacks required 
standardisation of techniques.

Thirdly, the differences between healthy cfDNA and onco-
logic ctDNA are not significant which leads to problems in 
distinguishing them from each other.

Lastly, the liquid biopsy is not usable in testing of every 
cancer type or every patient, diagnosed with a given type of 
cancer. The main problem being the insufficient concentra-
tion of CTCs and ctDNA fragments into the bloodstream of 
the patient(4).

Multiple studies were conducted with the goal of con-
firming that there is a difference between the length of the 
ctDNA fragments and regular cfDNA fragments. Oncologic 
patients were proven to have increased quantity of cfDNA, 
which can be result of tumour shedding ctDNA fragments in-
to the bloodstream(5).

The more valuable information is however, that the avera-
ge size of ctDNAfragments is smaller than the size of a non-
carcinome cfDNA(5,6). Some specific examples include:

Human Melanoma (Healthy-165bp, Oncologic-145bp(5), 
Human Lung Cancer (Healthy-283.7±4.1 bp, Oncolo-
gic-277.0±4.7bp)(5), Animal models of GBM (Most common 
length of Healthy fragments - 167bp, most common length 
of Oncologic fragments - 134 and 144bp)(5). It has also been 
proven, that the modal size of ctDNA fragments for most of 
the cancer types is bellow 167bp(6). The typical size of cfDNA 
fragments is between 150 and 200bp(7) which provides only 
small intersection of sizes. The shorter length of fragments 
originating from tumours compared to healthy fragments 
has been also confirmed by a study of dried blood samples, 
in which it was determined that the modal length of ctDNA 
fragments was 150bp compared to 170bp of healthy cfD-
NA fragments(8) Furthermore a study from 2015, targeted at 
patients suffering from HCC observed a positive correlation 
between the proportion of DNA fragments less than 150bp 
and the tumour DNA fraction in plasma as well as negative 
correlation between the proportion of DNA fragments larger 
than 180bp and tumour DNA fraction.(9) The same study al-
so determined based on the difference between cumulative 
frequencies between 8p deletions and 8q amplifications in 
plasma DNA of samples that since the difference attains ma-
ximum at 166bp the key difference between tumorous and 
nontumorous plasma DNA is the relavite abundance of DNA 
<166bp and 166bp(9).

It has been also proven, that not only the ctDNA fragments 
have shorter average length, but also, that the length of the 
fragment is clearly tied to the frequency of mutations on al-
lele. In Melanoma Patients samples, the mutations occured 
in highest frequency on fragments of length between 110bp 
and 140bp(5). Lung cancer samples also showed higher 
frequency of mutations in shorter fragments(5).

Figure 1. Liquid biopsy schema. Cell free DNA (cfDNA) is released into blood circulation by cells. The majority of these fragments is 
in length of 150-180bp and come from hematopoietic cells. However the DNA is also released by surrounding tissues potentially in-
cluding tumour cells in the bodies of oncologic patients. These circulating tumour DNA fragments (ctDNA) are generally shorter than 
145bp. The tumour releases not only the nucleic acids, but also the circulating tumour cells (CTC) which can also be used in the pro-
cess of genetic analysis. The blood also contains leukocytes, which after the centrifugation of blood create so called “buffy coat”, rou-
tinely used in the extraction of genomic DNA:
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Fragmentation of mutated ctDNA is much more prevalent 
than the fragmentation of healthy cfDNA(6) which could ex-
plain the overal shorter length of the ctDNA fragments.

It has also been suggested, that the maximum enrichment 
of the ctDNA occurs in fragments of length between 90 and 
150bp, with a secondary group in ranges of 250 to 320bp(6).

The contradicting evidence or facts, that could prove prob-
lematic are less numerous, yet they are present. It has been 
concluded that fraction of ctDNA in early stages of cancer is 
very low(14) which could lead to fragments of ctDNA that are 
longer than expected.

In the process of testing the lung cancer samples, it was 
discovered that, there is a considerable overlap in peak va-
lues of healthy and oncologic fragments(5).

The studies that were analysed for this study overwhel-
mingly support the use of fragment length of the DNA frag-
ments in plasma as a partial or independent predictor for di-
fferentiating healthy samples from carcinoma samples. This 
conclusion was achieved based on several independent stu-
dies, which provided result determining clear difference of 
length of ctDNA and cfDNA fragments(5-9).

The goal of our study was to learn whether the fragment 
length profiles of samples could be used as a partial predic-
tor for machine learning based liquid biopsy. Fragment len-
gth profiles represent the amount of DNA fragments of every 
given length in bp (base pairs) found in sequenced samples. 
We aimed to analyse differences in length profiles between 
samples and suggest whether these profiles could be used 
in the process of diagnosis and monitoring of oncologic di-
seases.

Material and Methods

Data acquisition
We downloaded the dataset of 116 oncologic samples 

from 44 patients (multiple samples were obtained from se-
veral patients as the disease progressed) and 22 control he-
althy samples(10) (EGA Study ID EGAS00001003530). All four 

grades of tumour severity(11) were present among the sam-
ples retrieved from patients.

Analysis
The first stage of data processing was carried out as pre-

viously described(12). NextSeq-produced fastq files (two per 
sample) were directly mapped using the Bowtie 2(13) algo-
rithm with --very-sensitive option to the human reference ge-
nome hg19 (GRCh37). Reads with mapping quality of 40 or 
higher were retained for further data processing. Length of 
a DNA fragment was determined as the difference of the left-
most and the rightmost mapped base of the corresponding 
read pair.

As the first step we decided to calculate weighted median 
and mean of fragment lengths of the samples. We used the 
functions provided by the Weighted stats library (https://py-
pi.org/project/weightedstats/).

As we can see from results, there is a  clear differen-
ce between oncologic and control samples in their length. 
Medians of both metrics are significantly lower (U=214.15, 
p=3.15 × 10-10) for oncologic samples (162-193 bp, mean 
174.28 bp) than healthy (177-192 bp, mean 183.18 bp), su-
ggesting that the overall length of fragments in oncologic 
samples is shorter than the length in control samples. The 
only statistic contradicting this conclusion is the maximum 
weighted median of fragment length in oncological samples, 
which is higher than the healthy one.

However this phenomena can be easily attributed to the 
existence of an outlier in oncologic samples. The difference 
between healthy and oncologic samples can be clearly seen 
on mean fragment length profiles shown in Figure 2.

After the initial analysis of median and mean fragment 
lengths suggested a clear difference between oncologic and 
control samples we decided to normalize the count of frag-
ments of given lengths in the samples (we divided the num-
ber of fragments of every given length by the sum of all frag-
ments in the sample in effort to ease comparison between 
the samples). Following the normalization we plotted all on-

Figure 2. Here we can see the mean oncologic and healthy fragment length profile calculated from samples in our dataset. The big-
gest difference is in a dominant peak around length 165 bp in oncologic samples which is not present in the healthy samples.Further-
more the healthy samples show higher count of fragments of longer length. These observations support the hypothesis of oncologic 
samples having shorter fragment length profiles.

https://pypi.org/project/weightedstats/
https://pypi.org/project/weightedstats/
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cologic and all healthy fragment length profiles to allow for 
visual comparison.

The difference between Oncologic samples and Control 
samples is clear. Oncologic samples have very high and 
sharp peak in lengths between 155 bp and 165 bp (Figure 
2 and 3(a)), which is completely absent in the control sam-
ples. On the other hand the control samples contain a higher 
number of fragments of length between 285 bp and 395 bp, 
which we can clearly see represented by the higher ridge on 
the right tail of the plot (Figure 2 and 3(b)).

We also compared the oncologic samples between each 
other in effort to find differences in their length profiles ba-
sed on the grade of the tumour. We compared the median 
fragment lengths by the grade (Figure 4) and calculated eu-
clidean distance of fragment length profiles from mean con-
trol healthy profiles (Figure 5).

We found that the G1 (the lowest tumour grade) samples 
were the most similar to control samples both in the median 
values and according to calculated euclidean distances. On 

the contrary the G4 (the highest tumour grade) samples pro-
ved to deviate from the control samples more significantly.

Machine learning
Based on the results from data analysis we decided to cre-

ate a prototype of machine learning model which would diffe-
rentiate the oncologic samples from healthy controls.

The crucial part of any machine learning is the feature se-
lection. Based on the analysis results we were convinced 
that the calculated weighted median and weighted mean 35 
had to be included as features. No matter how clear was the 
difference in weighted means and medians between onco-
logic samples and healthy controls these two features aren’t 
enough to show the whole characteristic of a length profile. 
We tested several different approaches to select the additio-
nal features:
• k-best - using the sklearn’s univariate feature selection 

(https://scikit-learn.org/stable/modules/generated/skle-
arn.feature_selection.SelectKBest.html) which selects 

Figure 3. Plots (a) and (b) show all fragment length profiles of oncologic and healthy respectively. The darker shade of the line indicates 
that the given part of profile was shared by higher number of samples when compared to lighter lines. These plots, same as the Figu-
re 2 show the dominant peak around 165bp in oncologic samples as well as the higher number of longer fragments in healthy samples.

Figure 5. In effort to reduce the undeniable visual difference be-
tween oncologic fragment length profiles and a  mean healthy 
fragment length profile into just one number we calculated their 
euclidean distance. When grouped by the tumour severity we ar-
rived to similar findings as with the median fragment length (Fi-
gure 4). The bigger the difference (higher number) the higher tu-
mour severity. G3 proved to be an outlier similarly to the median 
fragment length case.

(a) (b)

Figure 4. Boxplots shown in this figure represent the declining 
trend of median fragment length with the rising severity of tumour 
(tumour grade). The higher values in G3 samples when compared 
to G2 and G4 can be attributed to the early stages of metasta-
sis. The metastatic secondary tumours release longer fragments 
compared to the main tumour, which dilute the readings leading 
to a higher median fragment length. Other grades however all 
show signs that lower median fragment length could be linked to 
higher severity of the tumour.
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the best features based on univariate statistical tests we 
chose the 10 best features which had the best results in 
the given tests. 12 features total.

• medians - we divided the fragment length profile of a sam-
ple into ten bins by the

• fragment length. Each bin had the same range (first bin: 
1bp-100bp, second bin: 101bp-200bp and so on…). After 
the division into bins we calculated the weighted median 
of every bin and added it as a feature. This method produ-
ced 10 additional features. 12 features total.

• sums - we divided the fragment length profile into bins sa-
me as when we calculated the medians, however in this 
method we summed the number of fragments

• in given bin instead of calculating the weighted median of 
the length in the bin. This method also provided 10 addi-
tional features with 12 total.

• quantiles - when using this method we calculated the qu-
antiles of the fragment length profile with the step 0.1 (cal-
culating the Q(0.1), Q(0.2)…Q(0.9)). This resulted in 9 addi-
tional features, 11 total.

• peaks - last method we decided to test was splitting the 
fragment length profiles into bins with unequal range ba-
sed on the occurrence of peaks in the mean plotted pro-
files. The ranges we chose were:
1. 1bp-159bp - the pre-peak area
2. 160bp-174bp - main peak
3. 175bp-189bp - secondary peak
4. 190bp-229bp - downwards slope
5. 230bp-279bp - trough
6. 280bp-409bp - last low peak
7. 410bp-1000bp - tail
This method resulted in fewest additional features - 7, to-

taling only 9.
All additional features were calculated from the normali-

zed values.
We tested machine learning models based on Decision 

Trees, Random Forests, SVMs and XGBoosting with multiple 
different hyperparameter settings. We compared the models 

in combination with all feature selection models using the 
GridSearch method based on 10 fold cross validation with 
the deciding metric being the F1 score because of the unba-
lanced nature of our dataset. The selection process was do-
ne using 85% of our data as the training sub-dataset.

The SVM model combined with the “medians” feature se-
lection method provided the best result of F1 Score equal to 
0,9325. We used this model to predict the remaining 15% of 
the dataset with results captured in Figure 6.

Discussion
With the results we acquired during the research it is safe 

to claim that fragment length profiles are a viable indicator of 
oncologic disease in the organism. However no matter how 
promising the results may seem it is crucial to test this con-
clusion on more data, ideally from multiple different diagno-
ses. Oncologic disease show great variance in their beha-
viour and structure which is the main reason behind the need 
for more testing.

The scope of this work did not allow for testing of other 
machine learning algorithms and neural networks or deep le-
arning algorithms, which could potentially bring even better re-
sults. However even without testing these methods we were 
able to prepare a machine learning model with results satisfac-
tory enough to be used in combination with other partial pre-
dictors in a larger meta-predictor. This was the main goal of 
this study, which means it is safe to say we were successful.

During our research we also learned that samples with 
different tumour grades deviate in their fragment length 
profiles. The level of deviation varied, however it certainly 
showed a great potential for further research. The important 
finding was, that the Euclidean distance from mean control 
profile grew with the severity of the disease. Based on our 
analysis the biggest challenge, when solving this differen-
tiation, will most likely be the differentiation between grades 
G2 and G3 since the samples of these grades had often over-
lapping features.

What we deem as the biggest achievement of this study 
is that it showed a real possibility of liquid biopsy becoming 
a reality in the relatively near future. This would noticeably in-
crease the quality of life for oncologic patients and also in-
crease their chances of remission and curing.
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Figure 6. The model achieved satisfactory results on the test da-
tasets with scores of: F1 - 0.9301, Precision - 0.9 (ability to clas-
sify an oncologic sample as oncologic), Recall - 0.972 (ability to 
classify a healthy sample as healthy) and Accuracy - 0.9545. All 
scores were at least 0.9 which shows great promise in further us-
age of fragment length profiles in machine learning models used 
in oncology.
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